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Abstract: Rotary Inverted Pendulum is a nonlinear, dynamic unstable system. The key idea is to design a state feedback 
observer to stabilize the position of pendulum in inverted position which is mounted on a rotary base which is the 
stabilization point of the system. This paper deals with mathematical modeling, design of full order state feedback controller 
and case study with pole placement based design. 
 
Keywords: Rotary Inverted Pendulum(RIP), Kharitnov Polynomial, State feedback Observer. 
 
Introduction 
Rotary Inverted Pendulum(RIP) consists of a pendulum attached to a rotating arm driven by a motor. So RIP is a two degree 
of freedom (DOF) system. The two DOFs are angle of rotation of the rotating arm and angle of rotation of the pendulum. The 
rotating arm acts as the base for the inverted pendulum which means that the pendulum is coupled to a rotary base. For this 
system a full order state observer needs to be designed. The aim is to design a full order state observer gain matrix such that 
the range of each gain value is determined by Kharitnov polynomial technique. The simulation results show the stability of 
the system and error analysis for the designed observer for various gain values. 
 
Rotary Inverted Pendulum  
 

 

Fig. 1 Rotary Inverted Pendulum 
 
A RIP consists of dc servomotor, rotating arm and pendulum attached via encoder to the rotating arm. Rotating arm is 
attached to the rotor shaft of dc servomotor through a gear system. 
 
System Modeling 
System modeling consists of two parts i)Modeling of dc servomotor  ii) Modeling of rotating arm and pendulum system. 
 



344  Fourth International Conference on Recent Trends in Power, Control and Instrumentation Engineering - PCIE 2016 
 
Modeling of dc servomotor 
 

 
 

Fig 2: Equivalent model of armature controlled dc servomotor 

푅
   is the resistance of the armature circuit    

퐿    is the inductance of the armature circuit 

퐸  is the back emf developed 

훳  (푞 )  is the angular displacement of the motor shaft or angular displacement of the rotating arm 

푇   is the torque developed               

By Kirchoff’s voltage law: 

푉 − 푅 퐼 − 퐿 퐼 ̇ − 퐸 = 0                                    (1) 

By torque current relationship, 

푇훼	퐼                                                                                (2) 

The above proportionality can be written as: 

푇 = 퐾 퐼                                                                           (3) 

Where 퐾   is the torque constant. 

The torque equation can be written as: 

푇 = 퐽휔̇ + 퐵휔                                                                     (4) 

Where 

퐽 is moment of inertia 

퐵 is rotational frictional coefficient 

The expression for back emf can be written as: 

퐸 = 퐾 휔                                                                           (5) 

Where  

퐾  is the back emf constant 

휔 is the angular velocity 

휔 = 훳̇                                                                                       (6) 

From the above equations, the transfer function of the dc servomotor is obtained as: 
( )
( )
	= 	

( ( ) )
                                    (7) 

Taking into account, efficiencies of gear box and motor, 

The transfer function can be written as: 
( )
( )
	= 	 ɳ ɳ

( ( ) ɳ ɳ )
																															(8) 

Where: 
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퐾 = 퐾 퐾                                                                               (9) 

Since  

퐿 ≪	푅  
( )
( )
	= 	 ɳ ɳ

( ) ( ɳ ɳ )
																																																							(10) 

Where, 

ɳ   is the efficiency of the motor 

ɳ   is the efficiency of the gear box 

 
Modeling of rotating arm and pendulum 
 

 

Fig 3: Top view of rotary inverted pendulum 
 

 
 

Fig 4: Side view of the pendulum in motion 
 

L is the length to pendulum’s centre of mass (half the pendulum length) 

m  is the mass of the pendulum 

r is the half the length rotating arm 

훼  is the pendulum deflection 

휃	is the servo load gear angle 

From fig 4, there are two components for velocity of the pendulum lumped mass: 

    (11) 
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Velocity of the rotating arm:   

푉 = 푟훳̇                                                      (12) 

Taking the x and y components:    

푉 = 푟휃 − 퐿푐표푠훼(훼̇)          ,                              (13) 

				푉 = −퐿푠푖푛훼(훼̇)                                          (14) 

System Dynamic Equations 
Potential Energy is only due to gravity. 

푃퐸 = 푚푔ℎ = 푚푔퐿푐표푠훼                         (15) 
Kinetic Energy arises from the moving hub, the velocity of point mass in the x-direction, the velocity of the point mass in the 

y-direction and the rotating pendulum about its center of mass: 

푇 = 퐾퐸 +퐾퐸 + 퐾퐸 +퐾퐸         (16) 
The moment of inertia of a rod about its centre of mass is: 

퐽 = 푀푅                                                               (17) 
 
Taking:          푅 = 2퐿 

퐽 =
1
3푀퐿 																																																																																																																																																				 

퐾퐸 =
1
2 퐽훳̇ 																																																																																																																																															 

퐾퐸 =
1
2푚푉 																																																																																																																																															 

퐾퐸 =
1
2푚푉 																																																																																																																																																 

퐾퐸 =
1
2 퐽 훼̇ 																																																																																																																																	 

 
The Lagrangian is given by: 

퐿 = 푇 − 푃퐸                                              (18) 

̇ − = 푇 − 퐵 훳		̇                             (19) 

̇
− = 0                                                    (20) 

Output torque on the load of the motor is: 

푇 = ɳ ɳ ( )
                               (21) 

 
State space model of the system 
The state space model of one sided rotary inverted pendulum can be deduced from the above expressions as shown below, 

훳̇
훼̇
훳̈
훼̈

=

⎣
⎢
⎢
⎢
⎡
0 0 1 0
0 0 0 1
0 푂

0 0⎦
⎥
⎥
⎥
⎤ 훳
훼
훳̇
훼̇

+

⎣
⎢
⎢
⎢
⎡

0
0

ɳ ɳ

ɳ ɳ
⎦
⎥
⎥
⎥
⎤

	푉 																																																		 (22)            

Where:                 

 푎 = 퐽 +푚푟              

 푏 = 푚퐿푟 

푐 =
4
3푚퐿  
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푑 = 푚푔퐿 

퐸 = 푎푐 − 푏  

퐺 =
ɳ ɳ 퐾 퐾	 퐾 + 퐵푅

푅  

 
State Model Of Rip System 

 
Table 1: Specifications of Pendulum 

 
Specificatioms Pendulum  

Mass (m) .2kg 

Length (L) .3m 

Motor constant (Kt) .00767 

Gear ratio (Kg) 70 

Rotational frictional coefficient  (B) .004 

Efficiency of gear (Ƞg) .9 

Efficiency of motor (Ƞm) .69 

Armature resistance (Rm) 2.6ohm 

 
Transfer function of the system 
From the above specifications, transfer function of the system is given by: 

훼(푠)
푉 (푠) =

16.02푠 + .06292
푠 + 18.21푠 − 61.31푠 − 446.9 

 
Observability 
 

 
 

Fig 5: Block diagram to check observability 
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Fig 6: Front panel to check observability 
 
The observability analysis is performed using LabVIEW and the system is completely state observable. Hence a full order 
state observer canbe designed for the system. 
 
State Observer 
 

 

Fig 7: Full order state observer 
 
The state space model of RIP system is given as 

                (23) 

 
This in the form  

푥̇ = 퐴푥 + 퐵푢 
푦 = 퐶푥 +퐷푢 

The state equation of  Full order state observer is given by 
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푥̇ = 퐴푥 + 퐵푢 + 퐾 (푦 − 퐶푥)                   (24) 
 
The error equation of the observer is  

(25) 

                                              (26) 
The dynamic behavior of the system is obtained  from eigen values of the matrix given in (26). If [A-KeC] is a stable matrix 
then error will converge to zero. So to obtain range of Ke so that eigen values lies on stable region, Kharitnov polynomial 
technique is used. 
 
Kharitnov Polynomial 
A theory concerned with the root locations for a family of polynomials (cf. Polynomial). A good general reference for this 
area is . The motivation for this theory derives from the issue of robust stability for systems of linear time-invariant 
differential equations. For a system of linear differential equations (cf. Differential equation, ordinary) 푥̇ = 퐴푥                                                                                                                             
Stability is determined by the roots of the characteristic polynomial 
푝(푠) = 푎 + 푎 푠 + ⋯+ 푎 푠 = det	(푠퐼 − 퐴 + 퐾 퐶)					                                                          (27)                                                              
The system of differential equations will be stable if and only if all roots of this characteristic polynomial lie in the open left 
half of the complex plane. In this case, the polynomial is said to be Hurwitz stable. For a single polynomial, the question of 
stability can be determined using the Routh–Hurwitz criterion. 
The question of robust stability arises when it is supposed that the system of differential equations depends on uncertain 
parameters whose values are unknown but satisfy known bounds. The presence of such uncertain parameters means that the 
coefficients of the characteristic polynomial are unknown but bounded. This then defines a family of characteristic 
polynomials. The system will be robustly stable if all polynomials in this family have all their roots in the open left half of the 
complex plane. 
The most important result in this area is a theorem due to V.L. Kharitonov . In this result, the polynomial family considered is 
a collection of polynomials with the following specific form: 
푝(푠) = 푎 + 푎 푠 +⋯+ 푎 푠                                                                                              (3.32) 
푎 ≤ 푎 ≤ 푎 , 푖 = 0, … . . , 푛                                                                                               (3.33) 
Thus, each coefficient of the polynomial is contained within a given interval. Such a polynomial family is referred to as an 
interval polynomial. Kharitonov's theorem gives a necessary and sufficient condition for the robust stability of such an 
interval polynomial in terms of the following four polynomials: 
푝 (푠) = 푎 + 푎 푠 + 푎 푠 + 푎 푠 + 푎 푠 + ⋯                                                             
푝 (푠) = 푎 + 푎 푠 + 푎 푠 + 푎 푠 + 푎 푠 + ⋯                                                                                                       
푝 (푠) = 푎0

+ + 푎1 푠 + 푎2
−푠2 + 푎3

+푠3 + 푎4
+푠4 + ⋯                                                                                   (3.34c) 

푝 (푠) = 푎0
+ + 푎1 푠 + 푎2

−푠2 + 푎3
+푠3 + 푎4

+푠4 + ⋯                                                                                   (3.34d) 

The interval polynomial is robustly stable if and only if these four polynomials are Hurwitz stable. 
One of the main limitations of Kharitonov's theorem is the restriction that the polynomial family must have the structure of an 
interval polynomial. An important result which applies to a much more general class of polynomial families is the edge 
theorem. This theorem applies to a polynomial family consisting of a collection of polynomials of the form: 
푝(푠) = 푎 (푞) + 푎 (푞)푠 + ⋯+ 푎 (푞)푠 																																	                                                                                         
(28) 

Where푞 = [푞 	 … … … . . 푞 ];푞 ≤ 푞 ≤ 푞 , 푖 = 0,1,2, … … , 푘                                                    (29) 

and where the functions 푎 (. ), … . .푎 (. ) are affine linear. In such a polynomial family, the polynomial 
coefficients are contained in a polytope. 
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Design Of Full Order State Observer Using Kharitnov Polynomial 
Characteristic equation of full order state observer is given by 
 

det(푠퐼 − 퐴 +퐾 퐶) = 0			                                        (30) 
    
Considering  

퐾 =
퐾
퐾
퐾

 

As observer gain matrix, the characteristic equation can be written as 
푠 + (32.04퐾 + 0.01573퐾 + 18.21)푠 + (−256.32퐾 + 583.6퐾 + 0.286퐾 )푠 
+퐾 + 2.29퐾 + 17889퐾 − 446.8998 = 0                                                                 (31) 
By applying routh criteria for finding the range by Kharitnov technique, the following constraints are obtained 
4.56퐾 + 17889퐾 > 446.8998 
2퐾 − 0.02퐾 + 17889퐾 > 446.8998 
32.04퐾 + 0.01573퐾 > −18.21                                                                                 (32) 
Solving the characteristic equation considering the above constraints, the range of values for which error becomes 
approximately zero is 

|퐾 | ≥ 1.3, |퐾 | ≥ 0.56	, |퐾 | 	≥ 0.025 
 
Case Study with Pole Placement Technique 

 

 
 

Fig 8: Block diagram for finding obsever gain matrix 
 
Case study 1 
Design of Full order state observer for RIP system with desired poles placed at  s= -2, -2+j1, -2-j1 
 

 
 

Fig 9: Front panel of LabVIEW 
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Case study 2 
Design of Full order state observer for RIP system with desired poles placed at  s= -1,-2,-10 
 

 
 

Fig 10: Front panel of LabVIEW 
 

In both case stidies the observer gain matrix obtained is in adhrenece to the range of gain values. 
 
Conclusion 
In the research being carried out the system is taken as rotary inverted pendulum. It is a highly nonlinear and unstable system. 
Linearization is done with the help of state space equations. From the linearized model, the transfer function of the system 
with pendulum angle as output and input voltage to the motor is taken. Then from the characteristic polynomial that is the 
Kharitnov polynomial is formed with state feedback observer transfer function. By giving different ranges for state feedback 
observer gain matrix, the range which stabilizes the system is found ie all closed loop poles lies on the left side of the s plane 
in that range. 
The future scope of the project are i) aircraft control- as a counter balancing system in the case of an aircraft ii) ship control-
the centre of gravity remains same for the research proposed. So if there are different weights on both sides of the ship, then 
also ship can be stabilized on its centre of gravity by embedding this system and iii) automobile control.- During the event of 
different weights on both sides of the automobile, on curve of a road the automobile can stabilized on its centre of gravity. 
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